Sorry, you need to enable JavaScript to visit this website.
Skip to main content
Study
Emerging Classic

A machine learning-based clinical decision support system to identify prescriptions with a high risk of medication error.

Corny J, Rajkumar A, Martin O, et al. A machine learning–based clinical decision support system to identify prescriptions with a high risk of medication error. J Am Med Inform Assoc. 2020;27(11):1695–1704. doi:10.1093/jamia/ocaa154.

Save
Print
October 21, 2020
Corny J, Rajkumar A, Martin O, et al. J Am Med Inform Assoc. 2020;27(11):1695–1704.
View more articles from the same authors.

Machine learning can improve the accuracy of clinical decision support (CDS) tools. This single-site study used data from the electronic health record (EHR) and clinical pharmacist review to test the accuracy of a hybrid CDS system to identify prescriptions with high risk of medication error. The machine-learning based approach was more accurate than existing techniques such as the traditional CDS system and can improve the reliability of prescription checks in an inpatient setting.  

Save
Print
Cite
Citation

Corny J, Rajkumar A, Martin O, et al. A machine learning–based clinical decision support system to identify prescriptions with a high risk of medication error. J Am Med Inform Assoc. 2020;27(11):1695–1704. doi:10.1093/jamia/ocaa154.