Cases & Commentaries

Slippery Slide Into Life

Commentary By Louis P. Halamek, MD

The Case

A 25-year-old woman presented to the hospital in labor
and at full gestation after receiving uncomplicated prenatal care. A
third-year obstetrics and gynecology resident delivered the infant under
attending supervision via vacuum-assisted vaginal delivery. Following
delivery of the shoulders, the resident turned to place the vacuum device
on a nearby equipment stand. During that time window, the patient adjusted
her positioning while on the birthing bed (creating an inadvertent push),
and the infant slid out of the vaginal canal, slipped out of the
resident’s hands, and dropped headfirst onto the floor.

The infant suffered a left parietal fracture and hematoma
at the site of impact. Although he required close observation and
neurosurgical consultation, no intervention was indicated. In reviewing the
incident, staff interviews suggested that both noise and confusion of roles
among the labor and delivery team contributed to the error, which, through
luck alone, led to no long-term sequelae for the infant.

The Commentary

The delivery room can decompensate from a calm,
controlled environment into utter chaos in a matter of seconds.(1) While the fetus is
often the provocateur of such chaos, changes in the mother’s
condition, equipment failure, or suboptimal provider performance can all
play a role.

What is the source of the chaos in this case? Is it a
lack of content knowledge or cognitive skill on the part of the physicians
and nurses? Is it poor technical skills and coordination of manual
activities on the part of the health care team? Or is it suboptimal
coordination of another type—inadequate preparation and training,
lack of a shared mental model, and poor communication? The attached
video of a
simulation performed in our center reveals the complex milieu of cues
present during the resuscitation of a depressed neonate in the delivery
room and illustrates the many cognitive, technical, and behavioral skills
that are required to successfully care for patients in that domain.

The Joint Commission on Accreditation of Healthcare
Organizations (JCAHO) issued a sentinel event alert in 2004 after receiving
descriptions of 61 cases of perinatal death and 10 of permanent
Root cause analyses identified communication problems as a contributing
factor in 72% of the cases, making this the dominant cause of perinatal
death and disability. Deficiencies in organizational culture (hierarchy and
intimidation, failure to function as a team, and failure to follow the
chain of communication) played a role in 55% of the cases. These findings
indicate that the most frequently cited causes of sentinel events in the
delivery room involve deficiencies in behavioral skills (eg, communication,
leadership, and teamwork) rather than cognitive (content knowledge) or
technical skills (manual dexterity and proficiency).

JCAHO issued several recommendations to health care
organizations that care for pregnant women and newborns. The first two
concern conducting team training, clinical drills, and debriefings. Let us
consider how these recommendations can be implemented.

“Practice Makes

Although few would argue with the practical wisdom
underlying this adage, the devil often lives in the details of who
should practice, what should be practiced, how should
practice occur, and when or how often should practice take
place. Historically, health care professionals have trained by engaging in
rigorous classroom activities followed by observing skilled practitioners
before assuming graduated responsibility for independent practice, a model
sometimes derisively referred to as “see one, do one, teach
one.” Under this apprenticeship model, early training focuses on the
acquisition of vast content knowledge. That initial knowledge is followed
by training in pertinent technical skills. Unfortunately, this aspect of
training is rarely standardized for content or the level of experience of
the instructor.(3,4)

Simulation Training

High-fidelity simulation-based training offers an
innovative learning approach compared to the traditional medical learning
Trainees are immersed in an environment that provides them with multiple
realistic visual, auditory, and tactile cues, allowing them to effectively
suspend their disbelief and perform as they would in the real environment.
After their performance, they debrief with fellow trainees and expert
instructors, watching the video record of their actions and discussing what
went well, what did not go well, and what can be done to improve
performance in the future. This methodology is based on decades of
educational research revealing that adults learn by doing, not by listening
or watching; this is especially true of technical (manual tasks) and
behavioral (communication, teamwork, leadership) skills. High-fidelity,
real-time, simulation-based training represents the standard for a number
of industries, including aerospace, nuclear power, and national defense,
where the risk to human life is high.

A number of educators and investigators have begun to
question whether the traditional apprenticeship training model adequately
prepares health care professionals to safely handle the life-threatening
conditions that arise in their work. Does it make sense to
“practice” patient care in the real environment where
real consequences (to patients and those treating them) occur? Or
should practice occur in a medical simulator on simulated patients
with the threat of only simulated consequences?

How can health care organizations develop
simulation-based training programs? Although a comprehensive description of
the mechanics of establishing a simulation-based program is beyond the
scope of this discussion, several general comments are in order.

Tailor the training to the needs of the

When using any methodology, one should first ask “What are the
learning objectives?” Once objectives are defined, one should then
consider the trainees and their unique learning style(s). One can then
craft a program utilizing the learning methodology that optimally meets the
needs of these adult trainees. As an example, assimilation of content
knowledge may be most efficiently achieved by independent reading (journal,
textbook, on-line source). However, when it comes to the acquisition and
refinement of technical and behavioral skills (like those required by
multidisciplinary obstetric and pediatric teams during post-delivery
resuscitations), reading alone is insufficient. Rather, simulation-based
training, first in a controlled medical simulator followed by drills in the
real environment, is ideal.

Simulation-based training is not just for

While novices certainly can acquire cognitive, technical, and behavioral
skills in a simulator, experienced professionals also benefit. Other
industries such as aviation require rigorous simulator activities on an
annual (or more frequent) basis as a means of maintaining a high level of
performance and safety. Regularly working through challenging scenarios
with one’s colleagues in a realistic simulator, followed by
constructive debriefing, should become a mandatory component of the health
care professional’s ongoing development in the near future. This also
promotes reliance on necessary teamwork that underlies such training

The key to simulation-based training lies in the
methodology rather than the technology used for implementation.

Much attention has been paid to the sophisticated (and expensive—some
more than $100,000) human patient simulators used for adult anesthesiology
and critical care. Although the ability to realistically simulate patient
anatomy and physiology is an important component of a high-fidelity
simulated medical environment, it is not the only, nor, arguably, the most
important, element of simulation-based training. Instead, the key lies in
the learning methodology employed: immersion of trainees into challenging
scenarios followed by constructive debriefings that discuss the cognitive,
technical, and behavioral skills necessary for successful performance. The
biggest mistake in developing a simulation-based program is to invest most
resources into an expensive patient simulator while neglecting the other
important components necessary for a successful program.

Successful suspension of disbelief is best achieved by
providing as many visual, auditory, and tactile cues as possible.

A sophisticated human patient simulator is capable of providing numerous
realistic cues to trainees. However, it is not by itself sufficient to
create the sense of disbelief necessary for a successful learning
experience. In addition to the patient, cues are provided by monitors, code
carts, and other working medical equipment; fluids and drugs; professional
colleagues who respond as they do in actual life; and other elements of the
physical environment that make the simulator feel real. This is especially
true for medical domains for which few or no realistic patient simulators
exist. In our work in pediatric and obstetric simulation at the Center for
Advanced Pediatric Education (, we have found that relatively
simple and inexpensive mechanisms can be developed to overcome the
limitations of the current generation of patient simulators. As an example,
there is currently no true neonatal human patient simulator
available on the market; all “infant” simulators are just that,
designed with a size and features that portray a patient older than a
newborn. Because the mannequins used do not have internal physiologic
models and technologies that result in realistic heart tones and breath
sounds, we use a handheld computer and an electronic interface that allows
us to display realistic waveforms on a bedside monitor, effectively
conveying the physiologic state of the neonate in real time. This
eliminates the need for an instructor to continuously verbally describe the
state of the neonate during a simulated resuscitation and adds tremendously
to the ability of the trainee to suspend disbelief.

The most valuable component of a simulation program is
its group of instructors.

Effective conduct of simulation-based training requires instructors who
understand principles of adult education, appreciate the limitations of
traditional educational methods, and seek to change the current system of
medical training. Once identified, these instructors need to develop skills
in identifying learning objectives for various target audiences, designing
scenarios that reinforce these objectives, and facilitating constructive
debriefings. Often, such skills can be best acquired by partnering with
experienced simulation programs. Programs that offer instructor training
may be found by accessing the Society for Medical Simulation Web site

Establishing an effective and self-sufficient
simulation program requires a broad base of support; doing so involves
enlisting both leaders (ie, CEOs, board members) and potential

The most effective route to establishing and sustaining a robust simulation
program is to enlist both top-down and bottom-up support. What does this
mean? It is important to understand that even under the best of
circumstances, change is often slow and difficult. Change in medical
education and training certainly fits this description. It is also
important to understand that resources (human, physical, and financial)
will be required to effect change. Culture change and resource acquisition
require the cooperation of those controlling people, space and
money—typically department chairs and chief executive officers. An
investment in the time needed to educate those in charge of such resources
as to the benefits of simulation will be time well spent. One should
endeavor to develop an implementation plan that is “win-win”
and communicate that effectively—ie, explain in concrete terms how
supporting such a program will benefit the department and the hospital.

Support should also be sought from those “in the
trenches” of patient care. Help them to see how they will benefit
from a new way of doing things. Conduct pilot training programs and offer
them at no charge to those deemed as “thought leaders,” those
who are influential both among their peers and among the
institution’s leaders. These key trainees will serve as your
advocates, testifying to the value of your training program and advocating
for resource allocation on your behalf. They may also become founding
members of your instructor staff.

Achieving a broad base of support is vital to sustaining
a simulation program. First, the program should involve multiple
disciplines, including medical and surgical specialties and subspecialties,
nursing, pharmacy, respiratory therapy, and others. The more professionals
that benefit from the program, the more support it is likely to engender,
especially in the area of resource allocation. Second, the financial model
should involve multiple sources of income, including tuition, fees,
contracts, grants, and philanthropy. A growing endowment is the surest way
to achieve long-term fiscal sustainability, and it protects your program as
department chairs and hospital executives change.

Patient safety is an important issue at every health care
institution in our country. Education and training are two of the keys to
improving the performance of those carrying direct responsibility for
patient care. Yet, too often, the approach to education and training is to
“train as many as you can, as quickly as you can, as cheaply as you
can.” Certainly this mantra is not in line with the tenets of adult
learning. Simulation-based training is currently one of very few ways in
which to effectively conduct multidisciplinary team training in high-risk
domains. Professionals who understand the potential of this methodology,
long used in other industries, to revolutionize medical training must take
the lead in this effort now.

Implementing simulation-based training programs across
medical domains and institutions will require collaborative research and

Designing a high-fidelity simulation-based training program that is
grounded in adult learning theory and evidence-based medicine and can be
disseminated widely is not a simple task. Although many independent efforts
are under way around the world, more collaboration among investigators,
hospital administrators, risk managers, industry, and national medical and
patient safety organizations will be necessary to fully realize the
potential of this methodology.

Whether or not simulation-based training in and of itself
prevents incidents such as the ones described in this case, the goal of
such training should be to equip providers with the skills required to
perform their duties effectively and safely.

Take-Home Points

  • In high-risk medical domains such as the
    delivery room, conditions may deteriorate rapidly and without warning,
    threatening the lives of patients. The most frequent contributing
    factor to these incidents is deficient behavioral skills.
  • Simulation-based training, if effectively
    designed and implemented, is an excellent learning methodology for the
    practice of both behavioral and technical skills.
  • Methods to educate and train future
    generations of health care professionals must evolve away from
    traditional lecture-based techniques and embrace new modalities in
    order to effectively teach patient safety competencies.

Louis P.
Halamek, MD
Associate Professor, Division of Neonatal and Developmental Medicine,
Department of Pediatrics
Director, Center for Advanced Pediatric Education
Director, Training Program in Neonatal-Perinatal Medicine
Stanford University

Dr. Halamek is the recipient
of Agency for Healthcare Research and Quality (AHRQ) grant number
5U18HS012022 to study the effect of simulation-based training on
performance in the delivery room.


1. Halamek LP. Improving performance, reducing error, and
minimizing risk in the delivery room. In: Stevenson DK, Benitz WE, Sunshine
P, eds. Fetal and Neonatal Brain Injury: Mechanisms, Management and the
Risks of Practice. 3rd ed. Cambridge, England: Cambridge University Press;

2. Joint Commission on Accreditation of Healthcare
Organizations. Preventing infant death and injury during delivery. Sentinel
Event Alert. July 21, 2004; Issue 30. Available at:

3. Halamek LP, Kaegi DM. Who’s teaching neonatal
resuscitation to housestaff? Results of a national survey. Pediatrics.
[ go to PubMed ]

4. Murphy AA, Halamek LP, Lyell DJ, Druzin ML. Training
and competency assessment in electronic fetal monitoring: a national
survey. Obstet Gynecol. 2003;101:1243-1248.
[ go to PubMed ]

5. Halamek LP, Kaegi DM, Gaba DM, et al. Time for a new
paradigm in pediatric medical education: teaching neonatal resuscitation in
a simulated delivery room environment. Pediatrics. October
[ go to PubMed ]


VIDEO: This 5-minute video shows a simulated post-delivery situation. A
depressed neonate is being resuscitated after a delivery complicated by
fetal blood loss. The providers of bedside care are all trainees with
varying degrees of clinical experience enrolled in NeoSim, a
simulation-based training program in neonatal resuscitation at the Center
for Advanced Pediatric Education at Packard Children’s Hospital at
Stanford. Pay attention to the multitude of visual, auditory, and tactile
cues that are present in the simulated environment and the seriousness with
which the trainees go about their tasks; these cues enable the trainees to
effectively “suspend their disbelief” and behave as they would
in real life. Note that it takes the team some time to establish effective
communication and a clear chain of command. Compared to a commercial
airline cockpit, the language used in the delivery room often is not
standardized, important communications are rarely read back or confirmed,
and a large number of distracters are present. All of these issues and more
are reviewed during playback of the video during a constructive debriefing
held immediately at the close of the scenario. Together with the
instructors, the team of trainees discusses both the negative and positive
aspects of their performance in a safe and nonjudgmental environment.






Slippery Slide into Life


View Video